
FPGA-accelerated Real-Time Audio in Pure Data

Clemens Wegener
Interface Design Group

Bauhaus-UniversitÈat Weimar
clemens.wegener@uni-weimar.de

Sebastian Stang
The Center for Haptic Audio
Interaction Research (CHAIR)
sebastian@chair.audio

Max Neupert
The Center for Haptic Audio
Interaction Research (CHAIR)

max@chair.audio

ABSTRACT

With the advent of fast ARM processors more audio prod-
ucts are running embedded Linux systems and using high
level languages to implement real-time signal processing.
Still, embedded Linux systems can’t compete with the pro-
cessing power of desktop computers to implement com-
plex signal processing as needed for physical modeling al-
gorithms. This paper describes how to interface custom
digital logic circuits in an Field Programmable Gate Array
(FPGA) with the Linux operating system to speed up pro-
cessing. The hardware used is a Terasic DE10-Nano de-
velopment kit equipped with an Intel 1 Cyclone V SoC. 2

We are running Pure Data (Pd) on Linux and communicat-
ing with a mass-interaction network for physical modeling
sound synthesis on the FPGA. The code referenced in this
publication is available online. 3

1. INTRODUCTION

1.1 DSP on embedded Platforms—a brief Overview

The landscape of available hardware platforms capable of
running digital audio applications is diverse and ranges
from microcontrollers to full Linux systems running on
multi core CPUs. To pick the right platform for a project is
an optimization challenge to get the most computing power
for as little resources as possible. But not only that: In
most use-cases additional specifications are important. A
fan-less, passively cooled system is usually required andÐ
if used as an instrumentÐit’s mandatory that latency and
jitter of the input to output pipeline stays in tolerable [1]
limits. For light projects, platforms without the overhead
of an operating system have the advantage to be affordable,
compact, and robust. The Axoloti [2], Electrosmith Daisy,
and Teensy [3] boards are examples of this category. When
it comes to compact Linux boards, the choices are almost
endless. Leaving industrial single board computers and

1 Intel acquired and absorbed Altera in 2015 re-branding the Altera
products to the Intel trademark.

2 System-on-Chip: an integration of core components of a computer in
one chip (integrated circuit).

3 https://github.com/chairaudio/
SMC22-FPGA-accelerated-PD
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SOMs 4 aside, community friendly options are mostly ARM

architectures which include the Pine64 or Odroid boards.
The Raspberry Pi is in this group and is arguably the most
popular choice. To optimize Linux systems for real-time
audio and low latencies there are two main strategies:

1. Using a PREEMPT RT [4] kernel or a low-latency
kernel with rtirq, assigning the audio processes
higher priority 5 in the scheduling policy, reserv-
ing a processor core for the audio processes; all the
usual Linux audio optimizations. Patchbox OS by
Blokas 6 and Satellite CCRMA [5] are good exam-
ples for embedded Linux systems preconfigured that
way.

2. The more sophisticated solution achieving supreme
results at the cost of less portability involves using a
Xenomai kernel. One design option is to remove the
Audio IO from the kernels tasks completely to give
it higher priority in the user space above the kernel.
This is how the Bela [6] features outstandingly low
latencies sitting on top of the Beaglebone Black. Elk
Audio OS uses the Xenomai 4 dual kernel architec-
ture 7 with a general-purpose kernel and a dedicated
real-time kernel. Elk Audio [7] is designed to run
on a Raspberry Pi system. Bela and Elk Audio both
depend on custom hardware with audio codecs and
additional features which attaches to their respective
computing platform.

A comparison between the Xenomai based Elk Audio
and a PREEMPT RT system running on the same hardware
(Raspberry Pi) can be found in Vignati et al. [8]. A third
option would be to use a Linux OS capable processor, but
running the process ªbare metalº, treating the processor
like a microcontroller without the overhead of an operat-
ing system. This allows for an impressive embedded audio
performance. An example of this technique on the Rasp-
berry Pi is hinted to in Michon et al. [3]. The drawback is
that it makes development more complex if there is need
for OS features. Additional interfaces, graphics display,
and everything that the OS would be already providing
would need to be implemented once again.

4 System on Module: a compact circuit board, typical for embedded
systems. Usually populated with a processor or microcontroller and
memory. It is connected to a host board where peripherals can be at-
tached.

5 By setting the ªnice valueº.
6 https://blokas.io/patchbox-os
7 https://evlproject.org
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A third categoryÐbesides fast micro controllers and low-
latency OSsÐleverages the computing power of FPGAs.
Pfeifle and Bader [9] show, that FPGAs are particularly
strong in computing physical models in the form of finite
difference schemes, because these algorithms lend them-
selves to parallelization and their need for local storage
variables is modest. For the usage in musical instruments
FPGAs have two major drawbacks: designs need long de-
velopment times and usually solve domain specific prob-
lems. E.g.: a design that models a vibrating membrane
is inefficient in computing a string. Verstraelen et al. [10]
summarize this problem as follows:

Our conclusion is that FPGA technology has
the ability to implement computational inten-
sive real-time physical models of musical in-
struments, but the problem is to make this
technology sufficiently flexible.

The usage of High Level Synthesis (HLS) languages as
in Vannoy et al. [11] addresses the problem of long de-
velopment times by using abstract behavioral models that
automatically translate to complex digital logic designs
and hiding away implementation details to the developer.
Risset et al. [12] refine HLS by automatically translating
FAUST programsÐa data flow language specifically writ-
ten for DSP programmingÐto FPGA digital logic. This is
a very promising approach to speed up the development
process in the context of musical applications and it would
allow a broad library of open source code to use the mas-
sively parallel computing power on FPGAs with very low
latencies.

But it does not ease one of the drawbacks of fixed dig-
ital logic architectures: It would be desirable to program
FPGAs as flexible as software running on a CPU: algo-
rithms or effect chains running on digital logic should be
dynamically changed and be re-configurable by the user.
I.e., it is not possible to load libraries of compiled code
on an FPGAÐwhile the system is runningÐto change the
behavior of the circuit in a way that the designer has not
foreseen. 8

Verstraelen et al. [13], [10] approach this problem by de-
signing a DSP processor that is tailored to compute a wide
variety of physical models efficiently, without the need to
change the architecture of the digital logic. Their solu-
tion is the design of a specialized DSP processor that uses
the advantages of FPGA’s distributed and massively par-
allel computing capabilities. This processor can be in-
stantiated on an FPGA or be commercially produced as an
ASIC. 9 On top of this DSP processor runs software written
in a custom declarative language (conceptually a HLS lan-
guage again) but comes with the benefits of faster compi-
lation and re-programmability, similar to software on gen-
eral purpose CPUs or DSPs. The application running on this
DSP could theoretically be designed to be re-programmed

8 It can be argued that a part of the flexibility of software can be mim-
icked by a technique called partial reconfiguration, where parts of a logic
design can be replaced. ButÐunlike in softwareÐthis method is limited
by the hardware resources that the predefined reconfigurable area pro-
vides.

9 Application Specific Integrated Circuit. ASICs are developed to solve
domain specific problems and have medium to high volume productions.

in real-time, changing its data flow while audio is stream-
ing through it, by inserting parts of pre-compiled code.

1.2 Motivation for this Research

Our motivation to investigate beyond the obvious choices
of embedded platforms mentioned earlier was to create a
unique platform for our instrument [14] enabling real-time
acoustic excitation of complex physical models, possibly
implemented in lumped mass-spring networks. This led to
our wish for a powerful system which can compete with
or even outperform desktop performance in key aspects.
At the minimum it should offer some technological fea-
ture which is unique to the platform in comparison to the
rest of the embedded system landscape. We briefly inves-
tigated parallel processing systems and therefore acquired
an Nvidia Jetson Nano with the hope to implement physi-
cal models in shaders as discussed in Zappi et al. [15]. At
the same time we also began to investigate the ARM-FPGA-
SoC route and finally decided to focus on the latter due to
the overall flexibility of the system, such as being able to
integrate several audio input and output streams in digital
logic design.

FPGAs are extremely powerful devices which can be con-
figured by the user. This allows the FPGA to instantiate
logic circuits like processors 10 which are not a mere em-
ulation but truly identical to the original hardware down
to the logic blocks. For this reason our particular devel-
opment board is very popular in the retro-gaming scene.
Gamers can experience arcane gaming platforms with the
exact same performance and glitches like the original hard-
ware. FPGAs are available with different amounts of logic
cells and operators and can cost anywhere from 90 ct to
150.000 C. 11 Common uses for FPGAs are neural net-
works, simulations, database queries, LED-matrix con-
trollers, prototyping of integrated circuits in hardware de-
velopment, and cryptology. For DSP-applications a suffi-
cient amount of available multiplier cells in the FPGA is
essential. FPGAs can replace DSP chips and are also used
in audio interfaces with hardware effects. Complex audio
computations can be calculated massively parallel in FPGA

logic with very little processing latency.
Since the Intel Cyclone V SoC combines FPGA and ARM

processor in one chip, we can use the ARM CPU to run
Pd. Pd is a graphical real-time programming environment.
Using Pd in the product was a design decision to allow
us to draft and deploy in the same language. This is lib-
erating us from the complication of translating the entire
algorithm from Pd to FPGA logic. Instead we can make
better use of the FPGA focusing on specialized tasks which
would be computationally expensive to implement on the
CPU. Such computations can be a mass-spring-model, a
large reverberation effect or similar DSP blocks which are
then represented as an atom in the graph of a Pd patch. An
additional benefit of using Pd is that the system can be pro-
grammed in real-time: that allows for fast prototyping and
ªtuning algorithms by earº, while the system is running.

10 Processors implemented in FPGA hardware are called ªsoft coresº.
11 Based on a quick search on the website of a supplier. Many chips

were not even available, probably due to the ongoing shortage.
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We see ªtinkerabilityº in a potential product as a great fea-
ture. In the musical instruments market it is not uncommon
that the environment is open to the user so it can be tailored
to specific needs or features contributed by the community.
Products like the Organelle or the multi-effect devices from
MOD-Devices are illustrating this paradigm. Exchanging
parts of a DSP graph between the clocked FPGA and sched-
uler based Linux does however introduce complexity and
comes with challenges for the timing of the processes. This
paper is written to address these challenges and evaluate
the proposed solutions.

Miller Puckette announced that he intends to port Pd to
FreeRTOS so that it can run on the Espressif LyraT (ESP32)
board. 12 Running Pd on FreeRTOS may further facilitate
the FPGA integration and remove most of the obstacles
caused by the different computing approaches. We look
forward to test this when it becomes available.

The motivation for this research was to answer the fol-
lowing questions: ªIs it possible to include an FPGA copro-
cessor in the signal processing chain while using a proven
audio programming environment (Pd) on a Linux OS? Will
the performance of such system be sufficient for physical
modeling synthesis and the latency acceptable?º

2. HARDWARE AND SOFTWARE COMPONENTS

We chose the DE10-Nano as a platform because it’s one
of the entry products which nevertheless features a rea-
sonably sized FPGA along with an ARM core for running
Linux. The physical modeling algorithms we intend to run,
require sufficient hardware multipliers and on-chip ram.
The DE10-Nano features 112 fixed point 27 Bit multipli-
ers, which can run at a clock rate of 350 MHz. The ARM is
a dual core running at 800 MHz clock rate each.

The DE10-Nano board does not have an audio codec,
therefore we had to install it separately. We decided
for a Mikroe-506 board featuring a Wolfson WM8731
codec. Another component that is missing on the SoC
is the I2S interface to stream audio data. We build upon
work of Bjarne Steinsbù for Terasic’s DE1-SoC who wrote
bothÐthe I2S hardware interface and the accompanying
opencores-I2S device driver. 13 This gives us Verilog code
to instantiate the necessary hardware I2S interface inside
the FPGA fabric (see Fig. 1).

For the codec chip itself we configured the Altera Linux
Kernel 5.4.54-LTS to include the Wolfson 8731 codec
driver and added support for the ALSA 14 System on Chip
(ASoC) simple card. 15 The ASoC simple card driver
glues together the opencores-I2S device with the WM8731
codec and is the interface between the OS (ALSA) and
these components (See Fig. 2).

Finally we installed Pd v.0.51.2 with ALSA support on
the provided ÅngstrÈom v2016.12 Linux console image.
The custom digital logic for the sound card is completely

12 PD-dev Mailinglist 2021-07-13 https://lists.puredata.
info/pipermail/pd-dev/2021-07/022773.html

13 The source code is available at https://github.com/
bsteinsbo/DE1-SoC-Sound.

14 Advanced Linux Sound Architecture
15 Available at https://github.com/altera-opensource/

linux-socfpga.

opaque to user space software. We can simply use the stan-
dard ASoC simple card as an input and output device. This
allows for a standard user experience in Pure Data (or any
other audio software on the platform).

On the other hand, the DSP subsystem that is instantiated
in FPGA logic needs a non standard approach for communi-
cation and audio data exchange. To address this issue, we
wrote a Pd external that sends and receives audio blocks
and communication data with the FPGA (see section 3.2).

3. DATA FLOW BETWEEN PURE DATA AND
FPGA

On this SoC platform, FPGA and ARM share the same dieÐ
this is beneficial for fast data transfers at low latency. The
Cyclone V SoC features an industry standard AXI bridge
to allow high speed communication between both devices.

3.1 Memory Mapping

The AXI bridge is at a hardware address that is normally
only visible to the kernel. To access this region from user
space, we map the hardware address from /dev/mem to
our local program memory using mmap(). This sends a
request to the kernel to set up page tables so we can redi-
rect to hardware addresses. For this we need read/write
privileges to /dev/mem. On the FPGA side we can define
memory interfaces and other peripherals to be mapped to
sub-addresses of the AXI bridge. To read and write data
to the bus, we can then just map the hardware (sub-) ad-
dresses from the AXI bridge to our local program memory
and access it through a pointer.

In our case, the physical memory address of the Heavy
Weight AXI bridge is given to be 0xC000 0000. On the
FPGA side we instantiated several on-chip memory inter-
faces as shown in Fig. 3. The AXI bridge sub-addresses are
automatically offset to local addresses in the FPGA mem-
ory space, so we can directly read and write to them in a C
program as if they where local arrays.

3.2 Pure Data External

Pd is a real-time data flow programming environment.
It uses graphical objects (ªatomsº) which typically have
sinks (ªinletsº) and sources (ªoutletsº) that allow for inter-
connections to route data or signals in the graph. Pd ships
with a number of core objects that solve standard problems.
The user can extend these objects by ªabstractionsº, which
are itself written in Pd, similar to writing a reusable func-
tion in other programming languages. Objects written in
C and compiled for Pd are called ªexternalsº. Libraries of
abstractions and externals mostly maintained by third par-
ties can be distributed via Deken; Pd’s integrated package
manager.

Enabling the FPGA to exist as a node of the DSP graph of
Pd, we wrote an external which takes care of copying the
data from the CPU to the FPGA and back.

To allow audio signals and control data to be sent from Pd
to the FPGA on-chip memory we use the memory mapping
technique described above. Blocks of audio samples that
arrive at the externals input can be directly written to the
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memory mapped arrays and will then be sent over the AXI

bridge to FPGA on-chip memory.
In the external’s constructor we need to set up the mem-

ory map and retrieve a pointer to our hardware for later use
as shown in listing 1. In the DSP routine of the external
(the DSP callback) we can then use the pointer to read and
write samples to this buffer as shown in listing 2. Note that
we can detect dropouts, by reading and clearing a flag that
the digital logic on the FPGA sets when it is finished pro-
cessing the samples. We can also tell the FPGA how many
samples it should process by writing this information to the
on-chip memory. This way, we can change our block size
in the Pd patch and the FPGA will immediately follow the
change, shrinking or increasing the amounts of samples to
process dynamically.

// opening /dev/mem for mapping to local mem.
x−>fd = open(”/dev/mem”, (O RDWR | O SYNC));
// mapping input sample buffer
x−>in smp buf map = mmap(NULL,
IN SMP BUF SPAN, //size of map

( PROT READ | PROT WRITE ),
MAP SHARED, //synchronize data
x−>fd, 0xC0004000); //hardware address
x−>in smp buf ptr=(int *)(x−>in smp buf map);
// mapping output sample buffer
x−>out smp buf map = mmap( NULL,
OUT SMP BUF SPAN,
( PROT READ | PROT WRITE ),
MAP SHARED,
x−>fd, 0xC0005000); //hardware address
x−>out smp buf ptr=(int *)(x−>out smp buf map);

Listing 1. Mapping on-chip memory to the local sample
buffers.

...
// data struct for external
t fpga tilde *x = (t fpga tilde *)(w[1]);
// input samples to external
t sample *audio in=(t sample *)(w[2]);
// output samples from external
t sample *audio out=(t sample *)(w[3]);
// current block size
int n = (int)(w[4]);

if (x−>out smp buf ptr[0] != 0xabcd) {
// fpga not finished
pd error(x,
”FPGA buffer dropout detected”);

}
// copy data to fpga
memcpy((void*)&x−>in smp buf ptr[512],

(const void*)audio in,
4*n);

// get old (processed) data back from FPGA
memcpy((void*)audio in,

(const void*)&x−>out smp buf ptr[512],
4*n);

// tell FPGA number of samples to process
x−>in smp buf ptr[1] = n;
// pure data: buffer ready flag
x−>in smp buf ptr[0] = 0xabcd;
// clear FPGA ready flag
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x−>out smp buf ptr[0] = 0x0;
...

Listing 2. DSP callback function of the Pd external. Using
flags, FPGA dropouts can be detected.

3.3 FPGA Digital Logic

On the FPGA side, digital logic was written to read out
the on-chip memory modules and feed the data forward
to other DSP processes.

Index ARM Data FPGA Data

0 ARM Ready FPGA Ready

1 Block Size Buffer Interval Count

2-511 Reserved Reserved

512-1023 Samples Samples

Table 1. Data structure of the buffer exchanged with the
FPGA. Data size is 32 bit.

For measuring jitter and system latency, we implemented
a state machine that waits for new data, and then simply
copies the audio input to the audio output buffer and sets a
flag when it is done. An additional counter to measure the
time interval between two buffer arrivals was also imple-
mented. Table 1 shows the structure of exchanged buffers.
The ARM and FPGA buffers each reside in a dedicated on
chip RAM as depicted in Fig. 3.

Our real-world DSP application is a mass-spring model,
which unfortunately will have to be described in another
paper since we hit the 8 pages limit here.

3.4 Buffer Transfer Speed

Fig. 3 shows how data flows between Pd and the FPGA por-
tion of the SoC: Audio samples, parameter- and control
data is sent through the Heavy Weight AXI Bridge which is
the fastest hardware interface available on the ARM SoC.
This bus is 128 Bit wide and runs at a maximum speed
of 200 MHz. This leads to a theoretical maximum band-
width 16 of 3.2 GB/s between FPGA and ARM. [16]. How-
ever, the achievable speed varies with the applied memory
access techniques, the OS and the transferred data sizes.

16 The bridge is 128 Bit wide, with a maximum clock speed of
200 MHz.

On ÅngstrÈom embedded Linux a buffer of 64 32-bit inte-
gers transfers happen to be similar for memcpy() trans-
fers and DMA transfersÐthey are between 60-90 MB/s
fast [16]. For bigger buffer sizes, using DMAs is signif-
icantly faster: A 256 samples buffer has a transfer rate
of 250 MB/s using DMA and 60 MB/s using memcpy().
Top speeds for DMA transfers are at 8192 samples with
600 MB/s throughput while memcpy() peaks out at 60
MB/s. Xilinx Zynq platforms have similar transfer speeds
in our system configuration (see [17]).

Bruce R. Land reports read/write rates of 28 MB/s using
single element access (no memcpy()) and 266 MBytes/s
using DMA for a buffer size of 10.000 32-bit integers. 17

4. CONFIGURING PURE DATA FOR REAL-TIME
BUFFER TRANSACTIONS TO FPGA HARDWARE

A particular challenge in real-time systems is that infor-
mation needs to be passed just in time to form a contin-
uous data flow. We need to make sure that buffers are
passed from Pd to the digital logic design at regular in-
tervals. When intervals vary, the amount of time that can
be spend for computational tasks in the DSP subsystem will
vary too.

However, operating systems are usually optimized to
solve concurrent tasks and prioritize those that the sched-
uler assumes to be critical. Running programs may sig-
nify the scheduler that they finished their task by sleeping.
After either a predefined interval or an external wake up
mechanism they will be called to work again, but must
compete with other tasks for computational time. This
leads to the situation that data is typically processed in ir-
regular intervals, based on the arbitration of the scheduler.

Pd was written to run on non-real-time systems and is ca-
pable to deal with task scheduling by the OSÐessentially
allowing a balancing of computational load between its au-
dio tasks and parallel tasks of the OS.

Pd handles this load balancing with its own internal
scheduler: By default it computes the message and audio
flow for blocks of 64 samples each [18, p. 63]. When the
computation of one block of message and audio data flow
is completed, it sleeps, which allows the OS’s scheduler
to delegate the free compute time to other processes. The

17 https://people.ece.cornell.edu/land/courses/
ece5760/DE1_SOC/HPS_peripherials/FPGA_addr_
index.html
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sleep interval in Pd’s scheduler is calculated to be of ªrea-
sonableº size (Pd’s global delay setting divided by four).
In our case this was 0.75 ms. 18 That means, when the last
block of audio was processed and no more data is in the
pipeline, the scheduler sleeps 19 for 0.75 ms and frees up
the processor. During that time a couple of new blocks
(here, a block of 16 samples had a real-time duration of
0.33 ms) accumulate in the processing pipeline and will get
processed in a fast burst when Pd awakes from sleep.

This burst processing behavior is undesirable in the pres-
ence of external processes that need to be synchronized
to each sample block. When a burst occurs, the external
process (in our case the digital logic on the FPGA) has very
little time to compute the sample block before it must be re-
turned to the main process. Fortunately Pd provides means
to reduce sleeping time and thus get more predictable block
process intervals. By adjusting the sleepgrain parameterÐ
either through a startup flag or a Pure Data externalÐthe
timing of block calculations can be altered. In short: the
smaller the sleepgrain size, the less jitter will occur on the
block processing intervals but the more function calls and
context shifts between the OS and Pd will occur that will
slow down other processes running on the OS.

0 1.33 2.67 4 5.33 6.67

0 10.5 1.5

Time [ms]
Audio blocks

Pd scheduler
Sleepgrain
0.5ms

Pd scheduler
Sleepgrain
1ms

0 1.33 2.67 4 5.33 6.67Time [ms]
Audio blocks

0 1 2

0 1.33 2.67 4 5.33 6.67

64 Samples

Time [ms]
Audio blocks

Pd scheduler
Sleepgrain
3ms 3

A

B

C

3

Figure 4. Processing of audio blocks with the Pd scheduler
set to different sleepgrain sizes. A: Large sleepgrain sizes
results in audio blocks being processed in bursts. B: A
sleepgrain size with a similar duration like the blocksize
in time results in few overhead function calls but causes
jitter. C: Smaller sleepgrain sizes generate many overhead
function calls but delivers a steadier computation of audio
blocks. Overhead function calls, Sleep.

Fig. 4 illustrates how the sleepgrain parameter generates
an overhead in function calls for small sizes. Note that this
overhead does not harm the audio process, since the sleep
calls are only generated cyanonce all audio and messaging

18 We found the sleepgrain size by calling get sys sleepgrain()
in the sleepgrain external by IOhannes m zmÈolnig https://git.
iem.at/pd/zexy. This agrees with the global delay setting being
3 ms.

19 See http://msp.ucsd.edu/Pd_documentation/x3.
htm#s4.

work is done. The sleep function calls show a significant
loading effect, when Pd is mostly idle, but if we run an
audio process with more computational load to begin with
(as shown in Fig. 5) this parameter has less influence on
the total computational load. We only see a slight increase
for small sleepgrain sizes, since Pd spends less time in idle
state where additional function calls are generated. Even
though DSP load increases for smaller sleepgrain sizes,
buffer dropouts decrease. A side effect of this can be a
sluggish or unresponsive graphical user interface, because
background tasks will be slowed down.

To reduce overall system latency and allow the transfer of
smaller audio blocks without bursting, we compiled Pure
Data with an audio block size of 16 samples. This comes
with the trade-off of processing overhead through function
calls.

3000 500 100 10
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40

60

80

16
23

42

83
87 88 91

97

Sleepgrain [µs]

C
P

U
L

oa
d
[%

]

Figure 5. Low DSP load, High DSP load, The shorter
the sleep time in Pd, the more virtual load will be on the
CPU. The CPU load was measured with the in-built meter
in Pd, averaged over 10 seconds.

5. JITTER/LATENCY MEASUREMENT
SCHEMES

The total input to output latency measurements were taken
using a square wave generator and an oscilloscope. Us-
ing two oscilloscope channels, the time difference between
the original signal and the one sent through the device was
measured. The period of the square wave was chosen to be
longer than the latency of the system.

To quantify the block interval jitter we instantiated a
counter in digital logic. This counter was driven by a low
jitter 50 MHz clock source from external hardware. Each
time a block of audio was written to the digital logic, the
counter was reset and its value reported to a Pd external.
This way we can get reliable timing information without
needing to use system calls in our audio process functions.

Finally, we varied the block and sleepgrain sizes and cal-
culated the block interval time from the counter value.

We took the minimum of the block interval time of
10,000 measurements for each setting and used this small-
est interval to estimate the maximum use of capacity for
the FPGA as follows:
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FPGAmax =
min{I1, I2, . . . , Im}

Irt
· 100 (1)

where:

FPGAmax = maximum use of FPGA capacity [%]
Im = measured block intervals, m = 10000
Irt = block interval in real time.

This number tells us the maximum load time of the FPGA

where the likelihood of dropouts is very low.

5.1 Results
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Figure 6. System latencies in samples. Total is 209 sam-
ples.

The total measured roundtrip latency was 4.36 ms. This
accounts for all delays in the system: ADC and DAC con-
versions (23 samples), I2S sample buffer (8 samples), Pure
Data’s ªDelayº setting (3 ms) and FPGA buffering (16 sam-
ples). This delay accounts for 209 samples at a sample rate
of 48 kHz. Jitter was too small to measure with our mea-
surement techniques and was lower than 0.1 ms. We did
not investigate where the unknown additional latency of
18 samples arises from.

The share of delay added by the FPGA data transmission
was 0.33 ms or 16 samples at 48 kHz.

Since we are using Pd on an embedded system where it
is the process of highest priority, we can reduce the sleep-
grain size to even 10µs without major drawbacks. This
system exhibits reasonable low latency for use as a digital
musical instrument (4.36 ms) and leverages up to 88% of
the theoretical processing power of its FPGA coprocessor
(see Fig. 7).

6. CONCLUSIONS

We successfully demonstrated how to offload some of the
complex audio processing to an FPGA coprocessor from an
ARM processor running a Linux OS. From within a Pure
Data application the FPGA computing is handled by an ex-
ternal. The latency is satisfactory, the system is stable (yet
there is still room for further optimizations). A brief video
can be found at https://vimeo.com/668575690.
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Figure 7. Sleepgrain size 10µs, 100µs, 500µs,
3000µs. The shorter the sleep time and the bigger the

block size in Pd, the more compute time can be spent on
the FPGA.

7. FUTURE WORK

• Allow multiple FPGA Pd-externals to coexist in one
patch.

• Allow for uploading new bitstreams (the patterns for
the cell fabric layout on the FPGA defining the DSP

graph) to the FPGA from within Pd.

• In extension of the previous point: Let the user
edit Verilog/VHDL from within Pd, compile on the
fly and upload to FPGA. This would require open
toolchains which are not available yet.

• Extend the simple mass-string models to more com-
plex mass-interaction networks with non-linear in-
teractions like collisions, penetrations, attraction,
gravitation, parameters which are dynamic and/or
conditional, etc.

• To further reduce latencies alternative hard- and soft-
ware designs should be evaluated, such as replacing
the Altera Linux kernel with a Xenomai 4 dual ker-
nel or implementing the techniques found in Bea-
gleRT [6].

• Speeding up Pd processing by using heavy compiler
[20]. A benchmark must quantify the performance
gain.

• Using the Faust to Verilog/VHDL compiling
toolchain as in Risset et al. [12].
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